Lets look at the distribution of survival by passenger class with a prop.table
.
tab <- table(titanic$pclass, titanic$survival)
prop.table(tab, 1)
##
## Survived Died
## First 0.6191950 0.3808050
## Second 0.4296029 0.5703971
## Third 0.2552891 0.7447109
Ooh, that doesn’t look very good for third class. How about doing it as a figure?
Here is a kable
style table.
Survived | Died | |
---|---|---|
First | 200 | 123 |
Second | 119 | 158 |
Third | 181 | 528 |
Here is a pandoc
style table.
Survived | Died | |
---|---|---|
First | 200 | 123 |
Second | 119 | 158 |
Third | 181 | 528 |
model1 <- lm(TomatoMeter~I(Runtime-90), data=movies)
model2 <- update(model1,.~.+Rating)
model3 <- update(model2,.~.+I(Runtime-90)*Rating)
model4 <- update(model3,.~.+I(Year-2001)+Genre+I(BoxOffice-mean(BoxOffice)))
knitreg(list(model1, model2, model3, model4),
caption="Linear models predicting a movie's tomato meter rating",
custom.coef.names = c("Intercept", "Movie runtime in minutes",
"PG", "PG-13","R",
"Runtime*PG", "Runtime*PG-13", "Runtime*R",
"Year of release",
"Animation","Comedy","Drama","Family","Horror",
"Musical","Mystery","Romance","Sci-Fi/Fantasy",
"Thriller","Box office returns (millions USD)"),
digits = 3,
caption.above=TRUE,
include.rsquared=TRUE,
include.adjrs=FALSE,
include.nobs=TRUE,
include.rmse=FALSE)
Model 1 | Model 2 | Model 3 | Model 4 | ||
---|---|---|---|---|---|
Intercept | 41.602*** | 53.930*** | 53.966*** | 30.616*** | |
(0.680) | (3.326) | (3.325) | (4.334) | ||
Movie runtime in minutes | 0.405*** | 0.443*** | 0.398 | 0.310 | |
(0.030) | (0.030) | (0.229) | (0.222) | ||
PG | -12.870*** | -12.618*** | -6.353 | ||
(3.584) | (3.685) | (3.594) | |||
PG-13 | -18.776*** | -20.945*** | -1.848 | ||
(3.458) | (3.512) | (4.074) | |||
R | -8.437* | -6.734 | 13.228** | ||
(3.435) | (3.476) | (4.073) | |||
Runtime*PG | 0.015 | 0.148 | |||
(0.247) | (0.235) | ||||
Runtime*PG-13 | 0.163 | -0.018 | |||
(0.233) | (0.224) | ||||
Runtime*R | -0.069 | -0.134 | |||
(0.233) | (0.225) | ||||
Year of release | 0.165 | ||||
(0.128) | |||||
Animation | 24.297*** | ||||
(3.446) | |||||
Comedy | 6.100** | ||||
(1.880) | |||||
Drama | 18.890*** | ||||
(2.128) | |||||
Family | 9.851** | ||||
(3.109) | |||||
Horror | -5.022* | ||||
(2.334) | |||||
Musical | 11.901*** | ||||
(2.861) | |||||
Mystery | 10.500* | ||||
(4.138) | |||||
Romance | 13.915*** | ||||
(2.616) | |||||
Sci-Fi/Fantasy | 2.982 | ||||
(2.231) | |||||
Thriller | 6.339** | ||||
(2.420) | |||||
Box office returns (millions USD) | 0.095*** | ||||
(0.009) | |||||
R2 | 0.067 | 0.104 | 0.108 | 0.204 | |
Num. obs. | 2553 | 2553 | 2553 | 2553 | |
***p < 0.001; **p < 0.01; *p < 0.05 |